Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Hemmige S. Yathirajan, ${ }^{\text {a }}$

Kuriya M. Lokanatha Rai, ${ }^{\text {a }}$
Santhosh L. Gaonkar, ${ }^{\text {a }}$
Rajenahally S. Narasegowda, ${ }^{\text {a }}$ Basappa Prabhuswamy ${ }^{\text {a }}$ and Michael Bolte ${ }^{\text {b }}$ *
${ }^{\text {a }}$ Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ${ }^{\text {b }}$ Institut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Marie-CurieStraße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.048$
$w R$ factor $=0.123$
Data-to-parameter ratio $=13.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

3-(p-Nitrobenzyl)-1,3-thiazolidine-2,4-dione

The title compound, $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$, serves as a starting material for the synthesis of antihyperglycemic pharmaceuticals. The nearly planar thiazolidine-2,4-dione ring is almost perpendicular to the nitrophenyl ring.

Comment

Thiazolidine-2,4-dione is used as a starting material for the synthesis of drugs with antihyperglycemic activity (Zask et al., 1990). In heterocyclic chemistry, the thiazolidine-2,4-dione class is particularly important as a therapeutic agent and has been thoroughly investigated as a PPAR- γ-agonist that led to the development of several insulin-sensitizing drugs for the treatment of type-2 diabetes (Blanchet \& Zhu, 2004). Diverse biological activities have been found to be associated with thiazolidine derivatives (Singh et al., 1981). The present communication reports the synthesis of a novel thiazolidine-2,4-dione derivative, (I), and describes its crystal structure.

(I)

A perspective view of (I) is shown in Fig. 1. Bond lengths and angles can be regarded as normal (Cambridge Structural Database, Version 1.6 plus three updates; $M O G U L$ Version 1.0; Allen, 2002). The thiazolidine-2,4-dione ring is essentially planar (r.m.s. deviation $0.013 \AA$). It is almost perpendicular [89.67 (6) ${ }^{\circ}$] to the benzene ring. The nitro group is twisted by only $3.4(6)^{\circ}$ out of the plane of the benzene ring.

Experimental

An equimolar mixture of thiazolidine-2,4-dione ($1.17 \mathrm{~g}, 10 \mathrm{mmol}$), 1-bromomethyl-4-nitrobenzene $(2.16 \mathrm{~g}, 10 \mathrm{mmol})$ and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(1.38 \mathrm{~g}, 10 \mathrm{mmol})$ was stirred at room temperature in dimethylformamide (10 ml) for 6 h . The product formed was crystallized from methanol.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} \\
& M_{r}=252.24 \\
& \text { Orthorhombic, } P c a 2_{1} \\
& a=24.321(3) \AA \\
& b=5.0468(5) \AA \\
& c=8.6066(8) \AA \\
& V=1056.40(19) \AA^{3} \\
& Z=4 \\
& D_{x}=1.586 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Received 16 December 2004 Accepted 21 December 2004 Online 8 January 2005

organic papers

Data collection

Stoe IPDS-II two-circle diffractometer

ω scans

Absorption correction: none
10054 measured reflections
2109 independent reflections

1895 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.057$
$\theta_{\text {max }}=26.2^{\circ}$
$h=-30 \rightarrow 30$
$k=-5 \rightarrow 6$
$l=-10 \rightarrow 10$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.124$
$S=1.02$
2109 reflections
154 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0798 P)^{2}\right] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.42 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.31 \mathrm{e} \AA^{-3} \\
& \text { Absolute structure: Flack }(1983), \\
& \quad 971 \text { Friedel pairs } \\
& \text { Flack parameter }=0.03(11)
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

$\mathrm{N} 1-\mathrm{C} 5$	$1.373(4)$	$\mathrm{C} 2-\mathrm{S} 3$	$1.742(3)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.383(3)$	$\mathrm{S} 3-\mathrm{C} 4$	$1.807(3)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.469(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.556(3)$

H atoms were geometrically positioned and refined with fixed individual displacement parameters $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right.$] using a riding model, with $\mathrm{C}-\mathrm{H}=0.99$ and $0.95 \AA$ for methylene and aromatic CH groups, respectively.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: $X-A R E A$; data reduction: $X-A R E A$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine

Figure 1
Perspective view of the title compound, with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.
structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PLATON.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Blanchet, J. \& Zhu, J. (2004). Tetrahedron Lett. 45, 4449-4452.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Singh, S. P., Parmar, S. S., Raman, K. \& Stenberg, V. I. (1981). Chem. Rev. 81, 175-203.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (2001). X-AREA. Stoe \& Cie, Darmstadt, Germany.
Zask, A., Jirkovsky, I., Nowicki, J. W. \& McCaleb, M. L. (1990). J. Med. Chem. 33, 1418-1423.

